The Three Main Properties
These come directly from exponent laws.
Product Rule
logb(xy)=logb(x)+logb(y)
Log of a product = sum of the logs.
Why it works:
If bm=x and bn=y, then:
xy=bm⋅bn=bm+n
So logb(xy)=m+n=logb(x)+logb(y).
Example:
log(6)=log(2×3)=log(2)+log(3)
Quotient Rule
logb(yx)=logb(x)−logb(y)
Log of a quotient = difference of the logs.
Why it works:
If bm=x and bn=y, then:
yx=bnbm=bm−n
So logb(yx)=m−n=logb(x)−logb(y).
Example:
log(5)=log(210)=log(10)−log(2)=1−log(2)
Power Rule
logb(xn)=n⋅logb(x)
Log of a power = exponent times the log.
Why it works:
If bm=x, then m=logb(x), and:
xn=(bm)n=bmn So logb(xn)=mn.
Substitute m=logb(x):
logb(xn)=n⋅logb(x)
Example:
log(8)=log(23)=3⋅log(2)
Summary
| Property | Rule |
|---|
| Product | logb(xy)=logb(x)+logb(y) |
| Quotient | logb(yx)=logb(x)−logb(y) |
| Power | logb(xn)=n⋅logb(x) |
Special Values
logb(1)=0
Because b0=1.
logb(b)=1
Because b1=b.
Change of Base Formula
To convert between bases:
logb(x)=loga(b)loga(x)
Most useful form:
logb(x)=log(b)log(x)=ln(b)ln(x)
Example: Calculate log2(10)
log2(10)=log(2)log(10)=0.3011≈3.32