Rational Exponents

The Big Idea

Rational exponents are fractional exponents. They connect exponents and radicals into one unified system.

x1/2=xx^{1/2} = \sqrt{x}

A fractional exponent means “take a root.”


Why Does This Make Sense?

Think about the product rule: xaxb=xa+bx^a \cdot x^b = x^{a+b}

What is x1/2x1/2x^{1/2} \cdot x^{1/2}?

x1/2x1/2=x1/2+1/2=x1=x\begin{aligned} x^{1/2} \cdot x^{1/2} &= x^{1/2 + 1/2} \\ &= x^1 \\ &= x \end{aligned}

So x1/2x^{1/2} is something that, multiplied by itself, gives xx.

That’s exactly what x\sqrt{x} means.


The Basic Rule

x1/n=xnx^{1/n} = \sqrt[n]{x}

The denominator tells you which root to take.

  • x1/2=xx^{1/2} = \sqrt{x} (square root)
  • x1/3=x3x^{1/3} = \sqrt[3]{x} (cube root)
  • x1/4=x4x^{1/4} = \sqrt[4]{x} (fourth root)

Examples:

  • 91/2=9=39^{1/2} = \sqrt{9} = 3
  • 81/3=83=28^{1/3} = \sqrt[3]{8} = 2 (because 23=82^3 = 8)
  • 161/4=216^{1/4} = 2 (because 24=162^4 = 16)

The General Rule

What about xm/nx^{m/n}? There are two ways to compute it:

xm/n=xmn=(xn)mx^{m/n} = \sqrt[n]{x^m} = \left(\sqrt[n]{x}\right)^m

Take the root and raise to the power, in either order.

Tip: Root first is usually easier.


Example: Compute 82/38^{2/3}

The exponent 23\frac{2}{3} means: cube root, then square.

82/3=(83)2=22=4\begin{aligned} 8^{2/3} &= \left(\sqrt[3]{8}\right)^2 \\ &= 2^2 \\ &= 4 \end{aligned}

Example: Compute 272/327^{2/3}

272/3=(273)2=32=9\begin{aligned} 27^{2/3} &= \left(\sqrt[3]{27}\right)^2 \\ &= 3^2 \\ &= 9 \end{aligned}

Example: Compute 163/416^{3/4}

163/4=(164)3=23=8\begin{aligned} 16^{3/4} &= \left(\sqrt[4]{16}\right)^3 \\ &= 2^3 \\ &= 8 \end{aligned}

Negative Rational Exponents

Combine two rules:

  • Negative exponent → reciprocal
  • Fractional exponent → root

xm/n=1xm/nx^{-m/n} = \frac{1}{x^{m/n}}


Example: Compute 82/38^{-2/3}

82/3=182/3=14\begin{aligned} 8^{-2/3} &= \frac{1}{8^{2/3}} \\[0.5em] &= \frac{1}{4} \end{aligned}

Example: Compute 43/24^{-3/2}

43/2=143/2=1(4)3=18\begin{aligned} 4^{-3/2} &= \frac{1}{4^{3/2}} \\[0.5em] &= \frac{1}{(\sqrt{4})^3} \\[0.5em] &= \frac{1}{8} \end{aligned}

Why Bother?

Rational exponents let you use exponent laws on radicals.

Without rational exponents:

xx3= ??? \sqrt{x} \cdot \sqrt[3]{x} = \text{ ??? }

With rational exponents:

x1/2x1/3=x1/2+1/3=x5/6\begin{aligned} x^{1/2} \cdot x^{1/3} &= x^{1/2 + 1/3} \\ &= x^{5/6} \end{aligned}

The exponent laws make everything simpler.