Laws of Exponents

What is an Exponent?

An exponent is shorthand for repeated multiplication.

x3=x×x×xx^3 = x \times x \times x

The exponent tells you how many times to multiply the base by itself.


The Six Laws

LawRuleExample
Productxaxb=xa+bx^a \cdot x^b = x^{a+b}x2x3=x5x^2 \cdot x^3 = x^5
Quotientxaxb=xab\dfrac{x^a}{x^b} = x^{a-b}x5x2=x3\dfrac{x^5}{x^2} = x^3
Power(xa)b=xab(x^a)^b = x^{ab}(x2)3=x6(x^2)^3 = x^6
Zerox0=1x^0 = 150=15^0 = 1
Negativexa=1xax^{-a} = \dfrac{1}{x^a}x2=1x2x^{-2} = \dfrac{1}{x^2}
Distributive(xy)a=xaya(xy)^a = x^a y^a(2x)3=8x3(2x)^3 = 8x^3

Product Rule

Same base? Add the exponents.

xaxb=xa+bx^a \cdot x^b = x^{a+b}

Why it works: Count the factors.

x2x3=(xx)2(xxx)3=x5x^2 \cdot x^3 = \underbrace{(x \cdot x)}_{2} \cdot \underbrace{(x \cdot x \cdot x)}_{3} = x^5

Examples:

  • x4x2=x6x^4 \cdot x^2 = x^6
  • yy4=y5y \cdot y^4 = y^5 (remember: y=y1y = y^1)
  • 2325=28=2562^3 \cdot 2^5 = 2^8 = 256

Quotient Rule

Same base? Subtract the exponents.

xaxb=xab\frac{x^a}{x^b} = x^{a-b}

Why it works: Cancel the factors.

x5x2=xxxxxxx=xxx=x3\frac{x^5}{x^2} = \frac{x \cdot x \cdot x \cdot x \cdot x}{x \cdot x} = x \cdot x \cdot x = x^3

Examples:

  • x7x3=x4\dfrac{x^7}{x^3} = x^4
  • 21026=24=16\dfrac{2^{10}}{2^6} = 2^4 = 16

Power Rule

Power of a power? Multiply the exponents.

(xa)b=xab(x^a)^b = x^{ab}

Why it works: You’re repeating the multiplication.

(x2)3=x2x2x2=x2+2+2=x6(x^2)^3 = x^2 \cdot x^2 \cdot x^2 = x^{2+2+2} = x^6

Examples:

  • (x3)4=x12(x^3)^4 = x^{12}
  • (22)5=210=1024(2^2)^5 = 2^{10} = 1024

Zero Exponent

Anything to the power of 0 is 1.

x0=1(for x0)x^0 = 1 \quad \text{(for } x \neq 0 \text{)}

Why it works: Use the quotient rule.

x3x3=x33=x0\frac{x^3}{x^3} = x^{3-3} = x^0

But also x3x3=1\dfrac{x^3}{x^3} = 1, so x0=1x^0 = 1.


Negative Exponent

Negative exponent means reciprocal.

xa=1xax^{-a} = \frac{1}{x^a}

Why it works: Use the quotient rule.

x2x5=x25=x3\frac{x^2}{x^5} = x^{2-5} = x^{-3}

But also:

x2x5=1x3\frac{x^2}{x^5} = \frac{1}{x^3}

So x3=1x3x^{-3} = \dfrac{1}{x^3}.

Examples:

  • 23=123=182^{-3} = \dfrac{1}{2^3} = \dfrac{1}{8}
  • x1=1xx^{-1} = \dfrac{1}{x}

Distributive Over Products

Power of a product? Distribute to each factor.

(xy)a=xaya(xy)^a = x^a \cdot y^a

Why it works:

(xy)3=(xy)(xy)(xy)=(xxx)(yyy)=x3y3\begin{aligned} (xy)^3 &= (xy)(xy)(xy) \\ &= (x \cdot x \cdot x)(y \cdot y \cdot y) \\ &= x^3 y^3 \end{aligned}

Examples:

  • (2x)3=23x3=8x3(2x)^3 = 2^3 \cdot x^3 = 8x^3
  • (3y2)2=9y4(3y^2)^2 = 9y^4
  • (xy)2=x2y2\left(\dfrac{x}{y}\right)^2 = \dfrac{x^2}{y^2}